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SUMMARY

The present paper is the lead article in a three-part series on anisotropic mesh adaptation and its
applications to structured and unstructured meshes. A flexible approach is proposed and tested on
two-dimensional, inviscid and viscous, finite volume and finite element flow solvers, over a wide range of
speeds. The directional properties of an interpolation-based error estimate, extracted from the Hessian of
the solution, are used to control the size and orientation of mesh edges. The approach is encapsulated
into an edge-based anisotropic mesh optimization methodology (MOM), which uses a judicious sequence
of four local operations: refinement, coarsening, edge swapping and point movement, to equi-distribute
the error estimate along all edges, without any recourse to remeshing. The mesh adaptation convergence
of the MOM loop is carefully studied for a wide variety of test cases. The mesh optimization generic
coupling of MOM with finite volume and finite element flow solvers is shown to yield the same final
mesh no matter what the starting point is. It is also shown that on such optimized meshes, the need for
computational fluid dynamics (CFD) stabilization artifices, such as upwinding or artificial viscosity, are
drastically reduced, if not altogether eliminated, in most well-posed formulations. These two conclusions
can be considered significant steps towards mesh-independent and solver-independent CFD. The struc-
ture of the three-part series is thus, 1, general principles; 2, methodology and applications to structured
and unstructured grids; 3, applications to three-dimensional flows. Copyright © 2000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Finite volume and finite element methods are the most commonly used computational fluid
dynamics (CFD) discretization methods due to their flexibility in constructing structured and
unstructured meshes over arbitrary domains. While the debate over their relative merits still
rages, and will certainly continue for a while, the lines between the two approaches are
constantly blurring, with a fashionable compromise being the use of finite element approxima-
tions for diffusion terms and finite volume approximations for convective terms, with a distant
alternative being their combination into control volume finite element formulations. With these
points not yet conclusively settled, both camps have spent feverish, and perhaps inordinate,
effort in the last two decades on algorithmic refinements, giving fleeting thought to the
suitability of the meshes on which these constantly perfected algorithms are being applied. It
is not exaggerated to use the analogy of teams perfecting a Formula 1 racing tire to only be
ultimately able to use it on a golf cart.

Simultaneously, progress in the automatic generation of meshes has been steady. Suitable,
but not necessarily appropriate, meshes can be generated for almost any two- or three-
dimensional domains. These meshes, no matter how much experience is embedded into their
generation, remain intuitive and heuristically defined. It is not unexpected for the results of a
numerical simulation to strongly depend on the mesh chosen and it is not always possible, nor
feasible, to demonstrate mesh-independent results for a given problem strictly via mesh
refinement. At the same time, it is not difficult to illustrate via mesh adaptation that the most
appropriate mesh, for a fixed geometry, will violently change depending on flow conditions,
such as Reynolds number, Mach number, steadiness, inlet conditions, etc. If only because of
this observation, it should be evident that one should not dissociate the mesh generation effort
from the flow solver. Thus, the future in mesh generation is bound to include a tighter
coupling of the mesh with the solution, with the consequence that the part of the CFD cycle
spent in mesh generation can be shortened and made easier to automate, as the initial mesh
generation would only be considered an initial step in a more global cycle.

For both structured and unstructured meshes, current mesh adaptation strategies suffer
from several problems, not least among them is the fact that they often lead to an uncontrolled
increase in the number of mesh points, in their ultimate search for higher precision or in the
search for a more uniform error distribution. These refinement/coarsening and redistribution
methods produce nearly isotropic meshes since their aim is to make the length scales of each
element essentially the same in all directions [1–3]. It must be observed, however, that CFD
simulations are highly demanding because they are asked to resolve physical features such as
recirculations, flow separation and disparate gradient phenomena, such as in boundary layers
and shocks. Most of these phenomena, however, are characterized by regions of steep
gradients of the flow variables, embedded in or adjacent to regions where these variables vary
much more smoothly. Mesh adaptation procedures ought, therefore, to take advantage of
these highly directional flow features in order to avoid the need for a fine meshing of the entire
computational domain.

In terms of error estimation, recent years have seen a rapid development of adaptation
methods based on a posteriori estimators: with a solution uh computed on a given mesh, one

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 725–744



ANISOTROPIC MESH ADAPTATION. PART I: GENERAL PRINCIPLES 727

wants to measure its precision, namely estimate the error with respect to the exact, but
unknown, solution. Such an error measure would then be used to alter either the mesh or
the discretization methodology to move towards a target precision level. It is important
here to stress two points. First, such a process is seldom carried out to the end, i.e. mesh
adaptation is often used only to improve a solution and lower its error, but seldom is it
used to guarantee the final uniformity of the error level. Second, it must be emphasized
that in the broader context, adaptation does not necessarily mean refinement. In other
words, a properly adapted mesh to a given level of accuracy may be reached for structured
grids without changing the number of grid points from an original one (i.e. it is not
necessary to introduce hanging nodes) and with even fewer points in the case of unstruc-
tured meshes, as will be demonstrated in this series.

Along these lines, a directional approach was suggested by Peraire et al. [4], which
consists in constructing anisotropic meshes with biased resolution along rapidly changing
error estimate directions. They used an adaptive remeshing procedure for two-dimensional
inviscid flows that incorporated directional stretching of triangular meshes. Such anisotropic
meshes can also be produced by coupling a mesh movement strategy with local isotropic
refinement (r–h method) [5]. Kornhuber et al. [6] proposed an anisotropic strategy based
on directed refinement of pairs of triangular elements to resolve boundary layers. More
recently, in Vallet [7], Fortin et al. [8–10] and Castro-Dı́az et al. [11–13], a metric was used
as a measure of error, coupled to an r–h strategy, to achieve directionally adapted unstruc-
tured meshes having high aspect ratios.

The present series of papers will, in a logical and sequential way, demonstrate that a
cost-effective approach is the construction of directionally adapted, or anisotropic, meshes.
With a properly chosen a posteriori error estimator, having strong directional properties,
the mesh adaptation procedure will be shown to yield more appropriate meshes. Thus, the
procedure can either be used in a post-processing spirit to simply improve a solution or,
alternately, if coupled to the CFD solver in a continuous solver–adaptation loop, can be
shown to yield optimized meshes.

The label optimized meshes, rather than optimal meshes, will be used in order to avoid
the false impression that these are the best meshes that can be used, since they only are the
best meshes used according to the selected error estimator. It will be shown that widely
different initial meshes (ranging from extra coarse to extra fine, including counter-intuitive
meshes) will converge through the optimization procedure to a statistically identical final
mesh. It will also be shown that on such an optimized mesh, algorithmic refinements
embedded into the flow solver will be diminished in impact, even leaving a fighting chance
to first-order CFD methods.

The aim here, therefore, will be to describe general tools for structured and unstruc-
tured meshes, the latter including, besides mesh movement, refinement, coarsening and
reconnection. Numerical results will be given to illustrate the range of capabilities of the
method, while a more extensive validation will be presented in the following parts of
this three-paper series, the second part dealing mainly with structured and unstructured
grid issues and the third with three-dimensionality and applications respecting CAD
integrity.
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2. INTERPOLATION-BASED ERROR ESTIMATORS

Sharp estimates of the error, with an effectivity index close to unity, are usually difficult to
derive for highly complex problems and/or expensive to evaluate. Thus, one is led to accept
less precise but easily computable estimates as the basis for adaptive improvement, since the
error estimate serves only as an indication of relative error between successive meshes, or
approximation orders, and its calculation should not be allowed to take more than a small
percentage of the overall solution time.

In the present section, an efficient and simple error estimator is derived using finite element
interpolation theory. For linear elements, it is well known from Lagrange’s error formula that
the error term is proportional to the second derivative. For the sake of simplicity, the
derivation of the error estimate will be illustrated for a one-dimensional problem and then
generalized to the two-dimensional case. If the solution g(x) is approximated by gh(x) with
piecewise linear interpolation, as shown in Figure 1, a local approximation error eE can be
defined over an element E to be

eE(x̄)=g(x̄)−gE
h (x̄), (1)

where x̄ belongs to the interval [0, hE ].
The approximate solution, gE

h , may be expressed as a function of its nodal values in the form

gE
h (x̄)=

�
1−

x̄
hE

�
gI+

x̄
hE

gI+1, (2)

with the origin of x̄ placed at node I. The elemental error at any point x̄ is classically

Figure 1. Approximate solution by a discrete method.
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eE(x̄)=
�x̄2

2
−

x̄hE

2
�

g¦(j), (3)

which is the departure of a quadratic interpolation from a linear one. Here, j is some point
within the element E. It is straightforward to show that the maximum of the error on the
element is given by

emax=
hE

2

8
)d2gh

dx2 (j)
)
E

. (4)

Thus, the interpolation error for this one-dimensional problem is proportional to the product
of the second derivative and the square of the characteristic length of the element, hE.

An optimized mesh can thus be defined as a mesh for which the maximum error estimate is
equi-distributed over all elements, i.e.

hE
2 )d2gh

dx2

)
E

=C, (5)

where C denotes a user-specified tolerance (positive constant).
To extend this adaptation criterion to the two-dimensional case, the second derivative of gh

in the direction of a given unit vector V is computed as follows:

(2gh

(V2 =VTHV, (6)

where H represents the Hessian matrix of gh and is expressed as

H=

Á
Ã
Ã
Ã
Ä

(2gh

(x2

(2gh

(x (y
(2gh

(y (x
(2gh

(y2

Â
Ã
Ã
Ã
Å

. (7)

Let us consider an edge E of the triangulation and let t be the unit tangential vector and l
be the length of that edge. The maximum interpolation error along the edge can be estimated
again by

emax=
l2

8
)(2gh

(t2 (j)
)
E

. (8)

and one may use the same equi-distribution principle as in the one-dimensional case, i.e. the
error should be made the same on all edges.

We shall also develop this idea with a more geometric analogy. The error estimate on an
edge can be thought of as the length of this edge in a Riemannian metric deduced from the
Hessian matrix H(x). Indeed, the symmetric Hessian can be diagonalized as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 725–744



W. G. HABASHI ET AL.730

H=RLRT, (9)

where L is the diagonal matrix of the eigenvalues of H and R is the matrix of the eigenvectors.
In order to obtain a symmetric positive-definite matrix, the Hessian H is modified into the
metric M by taking the absolute value of its eigenvalues [7]. This results in

M=R �L�RT. (10)

From here on, we shall use the M length of any vector V to be defined by

VM
2 =VTMV. (11)

The matrix M will be a function of the co-ordinates x, so that we shall have a Riemannian
space. The goal is to rebuild the mesh so that all triangles are equilateral in this space. It has
been shown in the work of d’Azevedo and Simpson [14,15] that this goal is not, in general,
attainable while remaining in a planar domain: a general Riemannian space is curved.
However, a reasonable compromise is arrived at through a simple heuristic procedure. In this
new context, Equation (8) is slightly modified: let [xI, xJ ] be an edge of the triangulation, we
thus write

e= (xI−xJ)TM(xI−xJ)=C. (12)

An optimal mesh is thus defined as the mesh in which the length of all edges, in the defined
metric M, is equal to 
C ; the equi-distribution principle is applied to e.

Since M is a function of the space co-ordinates, Equation (12) must be modified one step
further. We must evaluate

e(xI−xJ)=
& 1

0


(xI−xJ)TM(l)(xI−xJ) dl. (13)

This integral will be approximated by some quadrature rule. In practice, M(x) will be
computed using a procedure described below and stored on a (fixed) background mesh. The
value of M(x) at any position of the domain will be interpolated on this background mesh
whenever needed during an adaptive loop, defined as the interval between two solutions of the
system of equations. With this, the edge-based error estimate can then be numerically
evaluated from Equation (13) for each edge of an element.

Remark 1
In Peraire’s work [4], a related procedure has been developed. The L2 error is equi-distributed
in the direction of the eigenvectors, where h=hk, with k=1, 2, are two local spacings and
V=Vk are the two unit eigenvectors of the M matrix. Accordingly, the optimal mesh criterion
(12) simplifies to

hk
2�lk �=C with k=1, 2. (14)
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This equation serves to compute two local spacings, hk=
C/�lk �, in two orthogonal direc-
tions, at any point in the domain. Then, a new adapted mesh is regenerated based on these
parameters and principal directions of M.

2.1. Computing the Hessian

There remains the question of obtaining, from a piecewise-linear finite element approximation
uh, an estimate of the Hessian matrix. There exists many possibilities to do so, and the simplest
and most precise one is to look for a piecewise-linear H(x)= (hij(x)) defined through a weak
formulation, i.e.

&
V

hij8h dx= −
&

V

(uh

(xi

(8h

(xj

dx, (15)

where 8h is a test function (for the moment, vanishing on the boundary). The left-hand-side of
Equation (15) implies a mass matrix that can be lumped, yielding for a vertex I

hij(I)= −
�&

V

(uh

(xi

(8I

(xj

dx
��&

V
8I dx

�−1

, (16)

where VI is the set of elements surrounding I and 8I is the associated linear shape function.
This enables the computation of hij (I) for all interior nodes. At boundary nodes, boundary
integrals containing (uh/(n should appear in Equation (15), but ignoring them is equivalent to
assuming (2uh/(n2=0 (as in a free-spline approximation in a one-dimensional problem). In
practice, good results are obtained by imposing (hij/(n=0 on the boundary; this condition
being obtained at boundary nodes through a finite difference formula.

2.2. Equi-distributing the error

With the estimate (13) of the interpolation error, one can evaluate the distribution of the error
over all edges. The remaining question is to determine the mesh that will minimize this error
estimate. It is often logically argued that the error will be minimized for a given number of
mesh points when it has been equi-distributed. It is also usual to define the error estimate over
an element (triangle or rectangle) in the same way that it has been defined here over an edge
and to adapt according to the fact that

‘the error estimate is equi-distributed when the error estimate is the same for all the elements of the
mesh.’

This assumption, however, usually leads to isotropic adaptation with, for example, a shock
wave being detected and refined, but ‘equally’ in all directions (see Figure 2).

The present approach bases the adaptation process on the following definition of equi-
distribution of the error estimate:

‘the error estimate has been equi-distributed when the error estimate is the same for all edges of a
mesh.’
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Figure 2. Adapted mesh with equi-distribution of the error estimate over the triangles and zoom on the
shock with isovalues of the Mach number.

This approach yields highly stretched meshes (see Section 4) because information on each edge
has been made directional.

Intuition and practice make one believe that a good, or at least a smooth, mesh should
consist of equilateral triangles (or squares), this being the only recourse if nothing is known
about the characteristics of the problem at hand. Making the error estimates equal on all edges
makes the mesh consist of equilateral triangles or squares in the Riemannian metric defined by
the Hessian of the solution.

3. ANISOTROPIC MESH OPTIMIZATION METHODOLOGY (MOM)

There are many commercial and free-ware mesh generators to build a mesh from some
description of the domain boundaries (see http://www.tfd.chalmers.se/CFD–Online for an
almost complete list of such applications), some of which even use the error criterion presented
here. We were, however, to the best of our knowledge, the first to suggest another approach:
from an existing mesh and from some description of the domain boundaries, to modify the
mesh instead of creating a new one as was done in, for example, Vallet [7] and Catro-Dı́az et
al. [13], and to do so by combining four different local mesh modification strategies driven by
the same directional error estimate.

There are two major advantages to proceed in such a manner. First, creating a new mesh is
costly and the overhead remains constant, even as the coupled mesher–solver is approaching
a converged solution on a nearly adapted mesh, while modifying an existing mesh may be
inexpensive, especially when there are few modifications between the previous mesh and the
adapted one. Second, our suggested approach is better suited for two of the main adaptation
tasks. At the beginning of an adaptation loop, the working mesh is usually the background
mesh, so location of nodes on the background is well initialized. Then, from loop to loop, the
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last adapted mesh is employed as the background mesh so that it is less likely to miss an
important feature of the metric tensor field when numerical integration is used to compute
integral (13). For example, problems could arise if one wanted to compute this integral on a
long edge crossing a thin shock, which could then be inadvertently skipped if the integration
points do not happen to fall within the shock thickness or spread.

To build an optimized mesh with all edges having approximately the same length in the
metric, we use the following techniques:

� mesh refinement and coarsening (h-method);
� change of nodal connectivity (diagonal swapping);
� relocalization of nodes at the ‘centre’ of their neighbours (r-method).

We purposely avoid using the p-method, which increases the degree of the basis functions in
the finite element method (see Gui and Babuška [16] and Oden et al.[17]). It is hoped that the
results presented in this series will make it abundantly clear that a low-order method, with a
properly adapted or optimized mesh, can provide very accurate results.

3.1. Mesh refinement

The mesh is refined by sweeping over all the edges and by carrying out local modifications
where needed. If the length e(g) of an edge in the given metric is greater than Lmax, then this
edge is halved by introducing a new node in the middle (Figure 3).

Care must be taken, however, on boundary edges. The problem is that a mesh is not a
perfect representation of the domain and the boundaries of the mesh are not the exact
boundaries of the domain. When cutting a boundary edge by introducing a new node, this
node must be reprojected onto the boundary of the domain, given by some computer aided
design (CAD) description. In some cases, however, the projection of the new node onto the
boundary may trap some interior nodes outside of the domain and these nodes must then be
removed.

3.2. Mesh coarsening

The mesh is coarsened by sweeping over all the edges and by carrying out local modifications
where needed. If the length e(g) in the given metric of an edge is lower than Lmin, then one of

Figure 3. Edge refinement.
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Figure 4. Edge coarsening.

the two nodes of the edge is removed, creating a ‘hole’ in the mesh, which is then filled by a
triangulation process (Figure 4).

As in the previous section, special care must be taken with boundary edges.

3.3. Mesh reconnection

The nodes of the mesh are reconnected by sweeping over all the edges and carrying out local
modifications where needed. An edge between two triangles is a diagonal of a quadrilateral
(see Figure 5), and one has to choose between its two diagonals to get the ‘best’ triangles.

This edge swapping procedure is a classical way of building a Delaunay triangulation (see
George [18]), which maximizes the minimum angles. To choose between the two configura-
tions, we maximize the minimum of r/p, where r is the radius of the inscribed circle of the
triangle and p is the half-perimeter, with 2p=a+b+c, with a, b and c being the lengths of
the edges of the triangle. By using the relation S=rp, where S is the area of the triangle, and
by using the Heron formula S2=p(p−a)(p−b)(p−c), a new criterion is defined

shape(�)=27
�r

p
�2

=27
(p−a)(p−b)(p−c)

p3 . (17)

This criterion is minimum and zero for a flat triangle and maximum and exactly one (with the
scale factor 27) for an equilateral triangle. While this is no longer the Delaunay criterion,
maximizing the minimum of the shape of the triangles according to criterion (17) will yield a
triangulation very near the Delaunay one. Criterion (17) is used because it depends only on the

Figure 5. Node reconnection.
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length of the edges of the triangles, which can be measured in the chosen metric. A mesh is
therefore constructed where all triangles are approximately equilateral in the metric, thus
having an error estimate equi-distributed over all the edges of the mesh. One should also note
that in a non-Euclidean metric, this shape criterion could be negative.

One needs to exercise care in the implementation of this diagonal swapping process. Because
criterion (17) depends on edge length, but not on orientation, the conformity must be checked
before any diagonal swapping. If an interior node belongs to only three edges, none of these
edges can be swapped. Moreover, if an edge belongs to two triangles that form a concave
quadrilateral, this edge cannot be swapped.

3.4. Mesh mo6ement

Moving nodes to smooth a mesh is a standard step in generation and adaptation codes. The
most straightforward approach would sweep the nodes and relocalize them at the baricentre of
their neighbours. In the current process, this approach would be anathema to the anisotropic
nature of the mesh. Thus, it is necessary for the metric to be included in the mesh movement
procedure.

The proposed strategy relies on an r-method, illustrated in Figure 6. The edges are viewed
as a network of springs [19,20], whose stiffness constant is proportional to the edge error
estimate. The ideal position of the vertices is then interpreted as the solution of an energy
minimization problem. This yields for a node xJ, all others being fixed,

min
xJ�R2

E(xJ)= min
xJ�R2

%
n

I=1

(xI−xJ)2kI(xJ), (18)

where kI(xJ) is the spring constant between xJ and xI. This constant should be independent of
the edge length and for this purpose, we use

kI(xJ)=e(xI−xJ)/xI−xJ, (19)

Figure 6. Spring analogy.
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where e(xI−xJ) is the metric length of the edge xJxI (Equation (13)) and xI−xJ is its
Euclidean length. This heuristic formula was chosen as it provided the best results among those
tried. Taking the gradient of Equation (18), the problem to find a position xJ that minimizes
the energy means finding a point xJ that is the root of

%
n

I=1

FI(xJ)= %
n

I=1

(xI−xJ)kI(xJ)=0, (20)

where by Hooke’s law, (xI−xJ)kI(xJ) is the force FI(xJ) related to the edge xJxI. It must be
noted that this is a highly non-linear problem: when a node is moved, the edges change, along
with the metric and spring constants. Equation (20) is solved node by node by a Gauss–Seidel
method, with all other nodes remaining fixed. For one node, Equation (20) is solved by an
iterative fixed point method, which is a weighted average

xJ
new=xJ

old+v

%
n

I=1

(xI−xJ
old)kI(xJ

old)

%
n

I=1

kI(xJ
old)

, (21)

where v is a relaxation factor. It is futile to carry out many iterations of Equation (21) and
find an accurate solution xJ because the neighbouring nodes xI will also eventually move.
Thus, it is more important to carry out many iterations of the overall Gauss–Seidel loop.

Some care has to be taken to prevent mesh degeneration or inverted elements, while moving
nodes. For example, a node should not be allowed to cross neighbouring edges and each node
should only be able to move only in the convex intersection of its neighbourhood. Mesh
movement methods in the literature impose many controls on the procedure, with some using
measures of smoothness or orthogonality, in addition to the error estimate, to control the
quality of node distribution (see Nakahashi and Deiwert [21,22], Palmerio [5,23] and a review
in Hawken et al. [24]). This can be done either by adding extra terms to the energy equation
(18) or by limiting the node displacement to a smaller zone. Such constraints may be necessary
in finite difference methods where a high degree of grid smoothness and orthogonality is
required. For FEM, however, such constraints are unnecessary and nodes can move freely as
long as elements remain convex.

For structured grids, moving nodes is the only available way of adapting the mesh, if
connectivity is to remain fixed (see Ait-Ali-Yahia et al. [25]). The mesh movement scheme
sketched above works well and is sufficient to give highly anisotropic meshes, as will be
illustrated in Section 4.1.

For unstructured meshes, if one applies the spring analogy with mesh refinement, mesh
coarsening and mesh reconnection, the results are not impressive and no convergence can
usually be attained. The problem is that the three strategies attempt building a mesh with
equilateral edges in the given metric, while the mesh movement through the spring analogy
may not yield a mesh with equal edges. For example, suppose that all the support edges of a
node have been made exactly of the same metric length and the spring analogy then applied.
If the orientations of the edges are not uniform around the node (see Figure 7) then the node
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Figure 7. Spring analogy does not build a mesh with constant edge lengths.

will move to reach a position of equilibrium, but where the edges are not of the same metric
length. In brief, the spring analogy does not work along the same spirit as mesh refinement,
coarsening and reconnection.

The problem is overcome, again heuristically, by introducing a forcing term into Equation
(20),

%
I=1

FI(xJ) %
n

I=1

(xI−xJ)kI(x)= %
n

I=1

(xI−xJ)kI(xJ),

with kI(xJ)=
1
n

%
n

I=1

e(xI−xJ)

xI−xJ , (22)

to ensure that energy is measured locally by the discrepancy of the lengths from their averages.
Equation (22) is solved by an iterative fixed point method, which is a weighted average

xJ
new=xJ

old+v

%
n

I=1

(xI−xJ
old)(kI(xJ

old)−kI(xJ
old))

%
n

I=1

kI(xj
old)

. (23)

With this iterative method, if xJ is at the centre, i.e. all the edges around are of the same metric
length, then kI(xJ)=kI(xJ) for all I. The numerator will vanish, but the denominator will not.
Then xJ

new will be equal to xj
old and the node will not move. This fixed point does not, however,

necessarily correspond to a minimum of the energy. For unstructured meshes, unstable points
are easily recovered by the other parts of the procedure.

3.5. Sequencing the operations

Particular attention has to be paid to the different criteria driving the adaptation process. For
example, the refinement process converges in a few sweeps over all edges, and the same is true
for mesh coarsening. But alternating refinement and coarsening can loop infinitely when the
threshold value for cutting an edge into two, and that for removing an edge to create longer
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ones, are too close to each other. So all the criteria governing the local operations must be
sequenced in such a way that the overall process converges.

Node displacement is the most powerful tool in the current optimization strategy. It can be
used solely when the mesh topology has to be kept unchanged, such as with structured grids
or unstructured meshes with a fixed number of nodes. When combined with other techniques
it greatly improves the mesh quality. In fact, all other processes are discontinuous, sporadic or
binary: one chooses to do something or not depending on whether a criterion is above a
threshold value. Displacement, however, is a continuous adaptive process that can perform
surgical improvements after a discontinuous process.

After much experimentation, the following algorithm has been retained:

1. Smooth the mesh after estimating the error by alternatively:
(a) swapping all the edges until convergence,
(b) moving all the nodes iteratively.

2. Adapt the mesh by iterating over the following loop:
(a) refine all edges above a threshold error estimate,
(b) swap the edges until convergence, then apply node movement,
(c) remove all nodes whose edges have an error estimate below a threshold value,
(d) swap the edges until convergence, then apply node movement.

3. Finally, smooth the mesh by repeating loop (1) before solving the equations again, starting
from an interpolated solution.

To conclude this section, there is an analogy between a CFD solver and a mesher. From a
mesh (nodes and connectivity table), a CFD solver determines a solution (r, u, 6, T, for
example) which minimizes the residual of the equations to be solved. From a solution, the
current mesher finds a mesh that minimizes the edge error estimate. Adaptation has been
traditionally used to improve the mesh and the solution, but the process has not often been
carried to convergence towards an optimal mesh. In fact, the current coupling, as will be
demonstrated, yields not only adapted meshes but optimal ones in the chosen metric.

3.6. Coupling with a sol6er

The goal of the current approach is thus not only to obtain an improved mesh, but to converge
the coupled solver–mesh adapter to an optimal solution, on an optimized mesh. This is
performed by coupling them in the following way:

Given (Mn, Sn), a mesh and a solution on this mesh at step n, the mesher produces a new mesh
Mn+1 and a solution Sn+1/2, the reinterpolation of Sn on Mn+1. A solution Sn+1 on Mn+1 is then
obtained with the solver starting with Sn+1/2 as an initial guess. The iterations go over until
convergence is reached.

The following points are important when this procedure is applied:

� Instead of fully converging the solution on intermediate meshes, it is better to do more
overall loops with partial resolution on them. A close coupling provides a maximum of
flexibility to the mesh and permits one to follow the evolution of the solution. This is done
through frequent adaptation. Typically, about a few dozen adaptive steps may have to be
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used to reach a converged steady flow, starting from a uniform initial solution. Good
results can also be obtained for unsteady flows (with steady shocks), provided a stronger
level of convergence is achieved during the solution steps.

� Many stretched elements must be concentrated in the area of shock waves, to capture them
efficiently. As a result, to pass from an adapted solution at a given Re to an adapted one
at another Re may not be a good practice. Adapting the mesh is like ‘freezing’ the shock
wave. It is better to restart the computation on a generic mesh, and use a high artificial
viscosity during the first loops, reducing it as the mesh converges. In fact, flows over an
NACA 0012 airfoil with Reynolds numbers as large as 32000 were adaptively computed
this way (see Section 4 below and Bourgault [26] for more details), with absolutely no
artificial viscosity in the final steps, demonstrating that, with unequal order or mixed-type
finite elements, a good mesh can lead to solutions requiring no artificial viscosity.

� The choice of the flow variable used to control the mesher is not unique. With the variable
chosen, one tries to directionally equalize the error for all the areas of variation, for all the
variables. The local Mach number appears to be a good choice to track shock waves, as
well as boundary layers. A more appropriate choice could be a scaled sum of all the
variables [27]. Castro-Dı́az et al. [13] proposed an extension of the metric definition to
systems by taking the intersection of all the ellipses associated with the metric based on
each and every variable of the system. This ‘intersection metric’ as well as the metric based
on the scaled sum of variables stated above may be good ideas, although their ability to
always produce highly anisotropic grids is not guaranteed: averaging directional errors
usually ends up with isotropic information.

In the current masher–solver loop, only a mesh and solution files are exchanged between the
mesher and the solver. Hence, the adaptive process can be used generically to improve the
solution quality of a wide variety of computational problems, using any discretization
technique that allows the evaluation of an edge error estimate.

4. NUMERICAL RESULTS

The capability of the proposed MOM is illustrated through numerical examples. An extensive
validation of MOM against analytical, numerical and experimental data will follow in Parts II
and III of the paper for structured and unstructured meshes.

4.1. Hypersonic in6iscid flows, on structured grids

The mesh adaptation method is tested on a structured quadrilateral grid for a hypersonic flow
field. The flow is modelled by the two-dimensional Euler equations written in conservative
form and solved by an implicit, Galerkin finite element method. The primitive variables
[r, u, 6, e ] are interpolated by bilinear shape functions. Artificial dissipation terms, necessary
for preventing instabilities, are added in the form of Laplacian conservative variables
[r, ru, r6, rh ] to the governing equations. More details about the flow solver may be found in
Ait-Ali-Yahia et al. [28].
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Figure 8. Mach number=15 and 30° angle of attack flow over a double ellipse: (a) initial grid, (b) final
adapted grid and (c) final adapted solution in temperature contours.

Since the present flow solver has no capability of handling elements with hanging nodes,
only the mesh movement scheme (see Section 3.4) is used during the adaptation process.

The proposed methodology is applied to a Mach 15 inviscid flow over a double ellipse at a
30° angle of attack [29]. The flow field contains a strong detached shock wave, followed by a
weak canopy shock, making this test quite challenging for flow solvers.

The calculations were initiated on a 45×124 grid, which is depicted in Figure 8(a). The final
adapted grid, shown in Figure 8(b), required six cycles of adaptation and the corresponding
adapted solution, displayed in Figure 8(c) as temperature contours, demonstrates the benefits
of mesh adaptation in efficiently resolving multiple shocks of different strengths.

In the current test case, both flow solver and grid adaptation procedures are placed in an
iterative loop, which is repeated until the lowest value of a user-specified artificial dissipation
coefficient is reached. For each adaptation cycle, the L2 norm of the solver’s residual is lowered
by two orders of magnitude and then the mesh nodes are displaced a few hundred times. It is
worth mentioning here that these excellent results are obtained despite the fact that the FEM
code was only used in first-order accuracy mode.

4.2. Transonic and supersonic 6iscous flows, on unstructured grids

The Navier–Stokes finite element solver used in this section is based on the non-conservative
form of the equations for the primitive variables. The thermodynamic variables, i.e. density
and temperature, are discretized with linear elements and the velocity field with quadratic, or
P1-iso-P2, elements. Surprisingly, no explicitly introduced numerical 6iscosity is needed to
stabilize low-to-moderate Reynolds number solutions on the final adapted meshes. As a result, all
the computations over the NACA 0012 shown here have been obtained without any artificial
viscosity. However, for other convection-dominated flows at high Reynolds number, an
anisotropic viscous term with an oscillation detector had to be added to damp instabilities
around shocks. For these situations, we tried to keep the artificial viscosity as low as possible,
decreasing it gradually as the resolution–remeshing loop progressed. Time marching is done
implicitly with a Gear scheme for both steady and unsteady flows. The system of equations is
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Figure 9. Adapted mesh with 4798 nodes for M�=2 and Re�=32000 over an NACA 0012. Local
Mach numbers are plotted with DM=0.1.

solved by the non-linear GMRES method [30], with diagonal preconditioning. For more
details on the solver, see Bourgault [26] or Boivin and Fortin [31,32].

Two typical flows over an NACA 0012 airfoil were used as test cases. The first is a
supersonic flow at M�=2 and Re�=32000. Figure 9 shows a steady flow almost everywhere,
except in the wake, where a small periodic instability appears. Two shock waves are observed,
a detached bow shock in front of the airfoil and one induced by the wake at the trailing edge.
The latter, being weaker, needs more adaptation steps than the bow shock in order to be
properly resolved.

The second test case is that of a transonic flow at M�=0.85 and Re�=10000. This flow
is clearly unsteady showing a large von Karman alley. Our adaptation strategy, by being an a
posteriori one, cannot predict in advance the movement of the vortices. Thus, instead of doing
frequent remeshing, which can introduce extra numerical diffusion due to the reinterpolation
of solutions between meshes, we prefer to use triangles smaller than the smallest vortices in the
wake. To do so, a global optimal mesh size h, which controls the remesher, is set to a smaller
value than in the previous example. As can be seen in Figure 10, shock waves right above and
below the airfoil result from the supersonic depression zone. Figure 11 shows a magnification
of the small isotropic triangles obtained with the remesher in the area where the shock wave
meets the boundary layer.

5. CONCLUSIONS

The general principles of a novel and cost-effective anisotropic mesh adaptation methodology
have been laid out in the present paper, considered Part I of a three-part series. The error
estimator has been discussed and its efficiency demonstrated on structured and unstructured
flow problems with shocks and wakes. The anisotropy of the resulting grids is clearly evident,
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Figure 10. Adapted mesh with 9959 nodes for M�=0.85 and Re�=10000 over an NACA 0012. Local
Mach numbers are plotted with DM=0.05.

as well as the quasi-impossibility for the user to have ‘divined’, at grid generation time, that
these were the most appropriate grids. Thus, it is conclusively shown that it is bad practice to
try to generate grids based on intuition and that anisotropic grids generated by a full-coupling
of solver and adaptation is the most logical way to obtain appropriate grids and to increase the
accuracy and reliability of CFD calculations.

In Part 2, addressing structured and unstructured grids, a thorough validation of the
adaption algorithm is undertaken. In particular it will be shown that the algorithm is

Figure 11. Zoom of the mesh of Figure 10 in the shock–boundary layer interaction zone.
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reversible. This means that, starting from highly distorted triangular and rectangular grids
defined on triangular or rectangular domains, the algorithm is able to recover a perfectly
uniform mesh if a uniform second derivative is specified. Results will also be presented for the
well-known AGARD series of test cases, ranging from 0.8 to 1.2, and compared with solutions
obtained with other methods. The cost-effectiveness of the present approach will be evident.

Finally, in Part 3, the full power of the approach will be unleashed for three-dimensional
problems. While the greater flexibility of these grids is acknowledged, this is usually tempered
by the accompanying loss of accuracy. It will be shown that not only does mesh adaptation
palliate this deficiency but surprisingly, the final adapted grid and solution turn out to be the
same, independent of the starting grid. An equally important surprise is that the grid and the
solution, at least in the tested runs, turn out to be independent of the solution algorithm (or
even commercial code) used. This at least demonstrates heuristically that many of the
advantages shown by higher accuracy schemes show up mostly when grids are inappropriate,
but that adapted grids are impervious to showcasing such advantages. CAD fidelity during
adaptation will also be demonstrated.
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